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NOTE 

De Vogelaere’s Method for the Numerical Integration 
of Second-Order Differential Equations without 

Explicit First Derivatives: Application to Coupled 
Equations Arising from the Schrijdinger Equation1 

Many problems occur in chemistry and physics which require for their solution 
the numerical integration of a system of coupled second-order ordinary differential 
equations without first derivatives. The method of de Vogelaere [la], [lb] has been 
found to be very successful [2]-[4] in certain inelastic molecular scattering problems 
in which coupled equations of the above general description arise. The method 
offers some practical advantages over more commonly used procedures. 

The above scattering applications involved linear differential equations, which 
result from the three-dimensional SchrGdinger equation, of the form [5] 

(2) 

Here p is the reduced mass of a structureless projectile-molecule system, fi is 
Planck’s constant divided by 27r, 9’&+) is a matrix element of an orientation- 
dependent potential energy function, E,(E, > 0) is the energy difference between 
the total energy of the composite system and the molecule in the ith internal state 
after the collision, li is the corresponding orbital angular momentum quantum 
number of the projectile in the center-of-mass coordinate system, & is the kronecker 
delta, and r is the radial coordinate. Solutions of Eqs. (1) are desired which vanish 
at the origin and have sinusoidal behavior for large r. 

For convenience, the asymmetric potential energy function was chosen to be 
separable, leading to matrix elements 

G(r) = giiV(r), (3) 

1 Supported by National Aeronautics and Space Administration Grant NsG-275-62. 
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where gij is a linear combination of angular matrix elements and V(r) is the spherical 
part of the potential energy function. In most cases, V(r) was large and positive 
for small r, negative for intermediate r, and approached zero for large positive r, 
although functions were tested that did not have the characteristic of being negative 
for intermediate value of r. 

Eqs. (1) were integrated employing the fourth-order step-by-step method of 
de Vogelaere for solving 

___ = Fi(x, Y~x), v&4..., Y&N, dx2 
i = 1,2, ..) N. (4) 

The purpose of this note is to call attention to this method which may have general 
utility for a wide class of problems. 

The algorithm makes use of one intermediate point and carries out the 
integration from x, to x,.+~ by cyclic use of the equations 

YW~ = ~i.0 + &b4,0 + 2$ (4Fi,0 - 3’~--112h (5) 

Y,,, = ~i,o + 44,o + f Vi,, + 2Fi.1121, (6) 

A.1 = ~4.0 + ; V’s,, + 4Fi.112 + Fi,J, (7) 

where 

and h = x,+~ - x, . The integration is conveniently begun by making use of 

Changes of mesh, h, are easily made by replacing Eq. (5) by [la] 

~i,l/e = ~i,o + $A,, + g [(3 + +, Fi,, - $ b2]. (12) 

where h, is the previous value of the integration mesh, h2 is the new value, and 
Fi,-l/z denotes the value of Fi,-l/t at x = x0 - h,/2. In addition, the algorithm 
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may be easily and efficiently programmed [7] following a scheme proposed by 
de Vogelaere [la]. 

In general, the numerical integration of coupled linear second-order ordinary 
differential equations without explicit first derivatives dictates [8] the choice of 
Numerov’s [9], [IO] algorithm because it is the highest-order method which is at 
the same time a three-point method. However, the Numerov method has the 
disadvantage [1 I] of requiring separate procedures to both (a) start the integration 
and (b) change the mesh. (In atomic and molecular scattering applications utilizing 
the Numerov procedure [12], Taylor-series expansions are commonly used to 
obtain the necessary starting values.) These shortcomings are avoided in the 
present method by the use of Eqs. (I 1) and (12), respectively. 

It is also remarked that one of the tests performed to determine the suitability 
of de Vogelaere’s procedure for the scattering problems discussed above was a 
comparison with the standard fourth-order Runge-Kutta-Gill (RKG) [I31 
procedure for a simple problem where analytical solutions are available, namely 
that of two coupled harmonic oscillators (see Table I). In agreement with earlier 
findings for a single equation [14], the present method was found to be at least 
as accurate as the RKG process and to be faster than the RKG algorithm by a 
factor of 2.2. This result can be essentially attributed to the efficiency of de 
Vogelaere’s algorithm which requires only two calls per step of the equation 

TABLE I 

~~JJTION TO &‘dx)/dxa = - [(k, + ka) Ydx) + kaYa( , 
daYa(x)/dxa = - Ik*.l%(x) + @a + k3 Ya(x)ll% , 

WHERE k, = 50, k, = 25, ks = 60, m, = 100, AND ma = 1 FOR THE INITIAL CONDITIONS: 
y,(O) = 0, y;(O) = -0.88618375, y,(O) = 0, y;(O) = -8.65892497 

x Yl Y2 Yl Ya 

0.0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 
0.5 -0.39171651 1.27961176 -0.39171659 1.27960085 -0.39171652 1.27961055 
1.0 -0.73272132 0.33932142 -0.73272193 0.33923655 -0.73272156 0.33928862 
1.5 -0.94955085 - 0.29217546 -0.94955045 -0.29211957 -0.94955073 -0.29215881 
2.0 -0.99501329 1.06599258 -0.99501218 1.06614876 -0.99501285 1.06605365 
2.5 -0.88048661 1.52916784 -0.88048752 1.52903919 -0.88048691 1.52912494 
3.0 -0.63274690 -0.07197542 -0.63274837 -0.07218162 -0.63274748 -0.07205724 
3.5 -0.27256565 -0.61378812 -0.27256406 -0.61356425 -0.27256509 -0.61370998 
4.0 0.14436873 0.56635594 0.14437035 0.56658434 0.14436938 0.56644839 
4.5 0.52779987 0.3 1050744 0.52779749 0.31017286 0.52779902 0.31038761 

ANALYTICAL SOLUTION RUNGE-KUTTA-GILL5 DE VOGELAERE” 
- 

a For h = 0.02. 
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subprogram compared to four calls per step in the RKG process. No comparisons 
were made with the special Runge-Kutta methods appropriate when second 
derivatives are absent [15]. 

The method of de Vogelare is distinguished by its basic simplicity and elegance 
which results generally in less programming than other methods. This advantage 
coupled with the straightforward starting sequence and ease in continuously 
changing the integration mesh warrant the consideration of the algorithm even for 
coupled linear second-order differential equation with variable coefficients and 
missing first derivatives. 
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